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We investigate a tethered �i.e., fixed connectivity� surface model on spherical surfaces with many holes by
using the canonical Monte Carlo simulations. Our result in this paper reveals that the model has only a
collapsing transition at finite bending rigidity, where no surface fluctuation transition can be seen. The first-
order collapsing transition separates the smooth phase from the collapsed phase. Both smooth and collapsed
phases are characterized by Hausdorff dimension H�2, consequently, the surface becomes smooth in both
phases. The difference between these two phases can be seen only in the size of surface. This is consistent with
the fact that we can see no surface fluctuation transition at the collapsing transition point. These two types of
transitions are well known to occur at the same transition point in the conventional surface models defined on
the fixed connectivity surfaces without holes.
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I. INTRODUCTION

Two-dimensional surfaces emerge as interfaces between
two different materials. Biological membranes are consid-
ered as such two-dimensional interfaces separating some bio-
logical materials. The model of Helfrich, Kleinert, and
Polyakov �HPK� �1–3� describes the mechanics of such sur-
faces on the basis of the two-dimensional differential geom-
etry and the statistical mechanics �4–6�.

One interesting topic is the crumpling transition, which
has long been investigated theoretically �7–9� and numeri-
cally �10–18�. The surface fluctuations grow anomalously at
certain finite bending rigidity in the surface models, where a
surface collapsing phenomena can also be seen at the same
transition point. These two phenomena have been understood
as the crumpling transition. The surface fluctuation of the
model is characterized by fluctuations of the bending energy
S2 and, consequently, we can see an anomalous peak in the
corresponding specific heat CS2

. On the other hand, the col-
lapsing phenomena are characterized by a discontinuous
change of the mean square size X2 and, then, we can see a
discontinuous �or a continuous� change in the roughness ex-
ponent or in the Hausdorff dimension.

We have not yet seen that any surface models undergo
only one of the two transitions. Experimentally, it was re-
ported that a surface fluctuation transition is accompanied by
a collapsing transition in certain artificial membranes �19�.
However, it is possible to consider that these phenomena are
two different ones. Buckling of a thin elastic shell is one of
the collapsing phenomena �20�, and it is not always accom-
panied by the surface fluctuations. In biological membranes,
the surface fluctuation called a rippling transition �21� is not
always accompanied by the surface collapsing phenomena.

In this paper, we show that the collapsing transition oc-
curs in a fixed connectivity surface model at finite bending
rigidity bc, where no surface fluctuation transition is ob-
served. The surface model is defined by the standard HPK

Hamiltonian, which is discretized on triangulated spherical
surfaces with many holes. The starting surface configuration
for the Monte Carlo �MC� simulations is constructed such
that the ratio of the area of the holes to that of the surface
including the holes is fixed in the thermodynamic limit.

The transition point bc�=1.4�1.5� is relatively larger than
that �bc�0.77� in the same model on spherical surfaces
without the holes. As a consequence, the surfaces with holes
are relatively smooth at the collapsing transition point bc.
Then, we have H�2 even in the collapsed phase.

The result in this paper indicate a possible collapsing tran-
sition which is not accompanied by the surface fluctuation
transition in biological or artificial membranes, although the
self-avoiding property �22–24� is not assumed in the model.
A crumpling phenomenon can also be seen on thin elastic
sheets and has been investigated by singularity analysis
�25,26�. However, the collapsing transition in biological
membranes is not yet completely understood because of the
complexity of biological membranes.

II. MODEL AND MONTE CARLO TECHNIQUE

In order to construct the lattice that has holes, we start
with the icosahedron. First, we divide the edges of the icosa-
hedron into l pieces of the uniform length a. Then, we have
a triangulated surface of size N0=10l2+2, which is the total
number of vertices in the triangulated sphere without holes.
Then an edge length of the icosahedron corresponds to l
edges in the triangulated sphere. Secondly, the l edges are
divided into m groups �m=1,2 , . . . �, where each group has
length L= l /m in the unit of a if m divides l. As a conse-
quence, we have a sublattice of edge length La in the trian-
gulated sphere of size N0. We should note that this sublattice
makes compartments on the lattice. Finally, one part of the
compartments in the sublattice is labeled as holes, and the
other remaining part is labeled as the lattice points. Thus, we
have a triangulated lattice with many holes. The total number
of holes in one face of the icosahedron is given by
m�m−1� /2 and, hence the total number of holes is
10m�m−1� on the lattice. Because of the holes on the sur-*Electronic address: koibuchi@mech.ibaraki-ct.ac.jp
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face, the total number of vertices N of the lattice with holes
are reduced from N0, which is the total number of the origi-
nal triangulated lattice as stated above. We note that N in-
cludes the vertices on the boundary of holes. The size of
lattice can be characterized by �N ,m�.

We show the holes in a face of the icosahedron in Figs.
1�a� and 1�b�, which, respectively, correspond to m=3 and
m=4. Note that the faces are those of the triangulated sur-
faces, whose total number of vertices is given by the above
described number N0=10l2+2. The small triangles including
the shaded ones in the figures form the abovementioned sub-
lattice or compartments and, therefore, they are triangulated
with more fine triangles. At the corners of each shaded tri-
angle, the three fine triangles, which are not shown in the
figures, are excluded from the hole �or equivalently included
in the surface�.

Figures 2�a� and 2�b� are the lattices of �N ,m�
= �1892,3�, and �N ,m�= �2022,4�. We note that the ratio
Rm�N� of the area of holes to that of the surface including
the holes is Rm�N�→ �m−1� /2m in the limit of N→� or
equivalently N0→�. In fact, the total number of triangles

in a hole is L2−3 and, then, the total number of triangles in
the holes is 10m�m−1��L2−3�, which is easily understood
since the total number of faces in the icosahedron is 20, and
the total number of holes in a face is m�m−1� /2 as stated
above. On the other hand, the total number of triangles on
the triangulated sphere is 2N0−4. Then, we have Rm
=10m�m−1��L2−3� / �2N0−4�. By using L2= �l /m�2 and
l2= �N0−2� /10, we have Rm= �m−1� /2m in the limit of
N0→�.

We assume two values for m such that

m = 3, m = 4, �1�

and four sizes of lattices are assumed for each m. Table I
shows the total number of vertices N and N0 for each m and
the corresponding Rm�N�, where N0 is the total number of
vertices of the original lattice, which has no holes. We find
that the ratio Rm�N� in Table I are very close to the values
R3���=1/3 or R4���=3/8, although N is finite in Table I.

The model is defined by the partition function

Z = �� �
i=1

N

dXi exp�− S�X�� ,

S�X� = S1 + bS2, �2�

where b is the bending rigidity, 	� denotes that the center of
the surface is fixed in the integration. S�X� denotes that the
Hamiltonian S depends on the position variables X of the
vertices. The Gaussian bond potential S1 and the bending
energy S2 are defined by

S1 = 

�ij�

�Xi − Xj�2, S2 = 

�ij�

�1 − ni · n j� , �3�

where 
�ij� in S1 is the sum over bonds �ij� connecting the
vertices i and j including those on the boundary, and 
�ij� in
S2 is also the sum over bonds �ij�, which are edges of the
triangles i and j. ni in Eq. �3� is the unit normal vector of the
triangle i. We note that S2 is a quantity that is defined on the
bonds. Note also that S2 is not defined on the boundary
bonds, because ni is not defined inside the holes.

The unit of b is kT, where k is the Boltzmann constant and
T is the temperature. Let � be the string tension coefficient
such that S=�S1+bS2, then the length unit a of the model is
given by �kT /�. Consequently, the unit of S1 can be ex-
pressed by a2 or kT /�. Note also that we can arbitrarily

TABLE I. The total number of vertices N and N0 for each m,
and the corresponding Rm�N�. N0 is the total number of vertices of
the original lattice, which has no holes.

m N�N0� R3�N� m N�N0� R4�N�

3 1892�2252� 0.3320 4 2202�2562� 0.3735

3 3512�4412� 0.3327 4 4402�3282� 0.3736

3 5612�7292� 0.3329 4 6042�7842� 0.3744

3 8192�10892� 0.3330 4 7722�10242� 0.3746

FIG. 1. �Color online� A face of icosahedron corresponding to
�a� m=3 and �b� m=4. The shaded triangles excluding their corners
correspond to the holes. The total number of holes in the face is �a�
3 and �b� 6, which are given by m�m−1� /2.

FIG. 2. �Color online� Starting configuration of surfaces of �a�
�N ,m�= �1892,3� and �b� �N ,m�= �2202,4�. The total number of
holes is 60 in �a�, and it is 120 in �b�.
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choose the length unit a because of the scale invariant prop-
erty of Z in Eq. �2�. Therefore, �=1 was assumed in the
simulations.

The total number of Monte Carlo sweeps �MCS� after
the thermalization MCS are about 5�6�108 for
�N ,m�= �8192,3�, 3�4�108 for �N ,m�= �5612,3�, and
2�3�108 for �N ,m�� �3512,3� at b close to the transition
point. Relatively smaller number of MCS was performed at
nontransition points. In the case m=4, the total number of
MCS after the thermalization MCS are 5�6�108 for
�N ,m�= �7722,4�, 3�4�108 for �N ,m�= �6042,4�, and
2�3�108 for �N ,m�� �3282,4�.

We use the canonical MC technique to simulate the inte-
grations in the partition function. The vertices X are shifted
so that X�=X+�X, where �X is randomly chosen in a small
sphere. The new position X� is accepted with the probability
Min�1,exp�−�S��, where �S=S�new�−S�old�.

The radius of the small sphere for �X is chosen so that the
rate of acceptance for X is about 50%. We introduce the
lower bound 1�10−8 for the area of triangles. No lower
bound is imposed on the bond length.

III. RESULTS

First, we show in Fig. 3�a� a snapshots of the �N ,m�
= �8192,3� surface, which is obtained in the smooth phase at

the transition point b=1.39. Figure 3�b� shows a snapshot in
the collapsed phase of the same surface at the same transition
point. The surface sections of Figs. 3�a� and 3�b� are shown
in Figs. 3�c� and 3�d�, respectively. We find from the surface
sections that there is a lot of empty space inside the surface
even in the collapsed surface. This implies that the surface is
not completely collapsed in the collapsed phase. The vertices
are not always confined in a small region; they are consid-
ered to be spread over some two-dimensional region in R3

such that the surface becomes almost smooth.
The mean square size X2 is defined by

X2 =
1

N



i

�Xi − X̄�2, X̄ =
1

N



i

Xi, �4�

where X̄ is the center of the surface. The mean square size of
the snapshots in Fig. 3�a� is X2=127, whereas X2=69 in Fig.
3�b�. These values of X2 are typical to the smooth phase and
to the collapsed phase on the �N ,m�= �8192,3� surface.

Figures 4�a� and 4�b� show X2 versus b obtained on the
surfaces of m=3 and m=4, respectively. The variation of X2

versus b seems to be not so sharp compared with the results
of the tethered surface model in Ref. �12� even when N be-
comes large. The surface size seems to change continuously
in the model in this paper.

The fluctuation CX2 of X2 can be defined by

FIG. 3. Snapshots of surfaces of �N ,m�= �8192,3� at b=1.39;
�a� a smooth surface, �b� a collapsed surface, �c� the surface section
of �a�, and �d� the surface section of �b�. The mean square size X2

=127 in �a�, and X2=69 in �b�, where X2 is defined by Eq. �4�.
Figures were drawn in the same scale.

FIG. 4. The mean square size X2 vs b obtained on the surfaces
of �a� m=3, �b� m=4, and �c� m=5.

FIG. 5. The fluctuation CX2 vs b on the surfaces of �a� m=3 and
�b� m=4. The error bars denote the statistical errors, which were
obtained by the standard binning analysis.

FIG. 6. Log-log plots of the peak values CX2
max against N, which

were obtained on the surfaces of �a� m=3 and �b� m=4. The straight
lines drawn in the figures were obtained by fitting the data to Eq.
�6�.
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CX2 =
1

N
��X2 − �X2�2 , �5�

which is expected to reflect surface collapsing phenomena.
Figures 5�a� and 5�b� are CX2 against b obtained on the lat-
tices of m=3 and m=4, respectively. Sharp peaks can be
seen in CX2 and grow larger and larger when the size N
increases. This anomalous behavior of CX2 indicates a dis-
continuous change of the surface size. Therefore, this surface
collapsing phenomenon can be viewed as a phase transition
contrary to the expectation from the smooth variation of X2

in Figs. 4�a� and 4�b�.
From Figs. 5�a� and 5�b� we find that the transition points

bc are about bc=1.4 and bc=1.5 in the cases m=3 and
m=4, respectively. Both of them are relatively larger than the
transition point bc�0.77 of the same model on the fixed
connectivity surface without holes �12�.

In order to see the order of the transition, we plot the peak
values CX2

max against N in Figs. 6�a� and 6�b� in a log-log
scale. The straight lines drawn in the figures were obtained
by fitting the data to

CX2
max � N�, �6�

where � is a critical exponent of the transition. Then, we
have

� = 1.18 ± 0.07 �m = 3� ,

� = 1.13 ± 0.08 �m = 4� . �7�

These results indicate that the collapsing transition is of first
order. In fact, we understand from the finite-size scaling
theory �27,28� that the maximum CX2

max should scale accord-
ing to N���=1� at the transition point if the transition is of
first order �29�.

Figures 7�a�–7�c� show the variation of X2 versus MCS
obtained at b=1.34 on the �N ,m�= �3512,3� surface, b=1.4
on the �N ,m�= �5612,3� surface, and b=1.39 on the
�N ,m�= �8192,3� surface, respectively. Figures 7�d�–7�f� are
the normalized distribution h�X2� �or histogram� of X2 corre-
sponding to the variations of X2 in Figs. 7�a�–7�c�, respec-
tively. We find a double peak structure in h�X2�; one of the
peaks represents the swollen and smooth state, which corre-
sponds the snapshot in Fig. 3�a�, and the other represents the
collapsed state, which corresponds to the snapshot in Fig.
3�b�.

Figures 8�a�–8�c� show the variation of X2 versus MCS
obtained at b=1.44 on the �N ,m�= �3282,4� surface, b=1.5
on the �N ,m�= �6042,4� surface, and b=1.51 on the
�N ,m�= �7722,4� surface, respectively. Figures 8�d�, 8�b�,
and 8�c� are the normalized histogram h�X2� of X2 corre-

FIG. 7. The variation of X2 against MCS ob-
tained on the surfaces of �a� �N ,m�= �3512,3� at
b=1.34, �b� �N ,m�= �5612,3� at b=1.4, and �c�
�N ,m�= �8192,3� at b=1.39. The corresponding
distribution h�X2� of X2 are shown in �d�, �e� and
�f�.

FIG. 8. The variation of X2 against MCS ob-
tained on the surfaces of �a� �N ,m�= �3282,4� at
b=1.44, �b� �N ,m�= �6042,4� at b=1.5, and �c�
�N ,m�= �7722,4� at b=1.51. The corresponding
distribution h�X2� of X2 are shown in �d�, �e�, and
�f�.
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sponding to the variations of X2 in Figs. 8�a�–8�c�, respec-
tively. The double peak structure can also be found in h�X2�
in the case m=4.

The double peaks in h�X2� allow us to estimate the Haus-
dorff dimension H in the smooth state and that in the col-
lapsed state, where H is defined by

X2 	 N2/H. �8�

Note that we understand from the value of H how smooth the
surface is, because H is defined so that H varies depending
on the distribution of vertices. In fact, we have H→2 when
the vertices form a two-dimensional region in R3, and we
have H→3 when the vertices form a three-dimensional re-
gion of constant density of vertices. Moreover, the vertices
can form a zero-dimensional region �
 a point� if no self-
avoiding property is assumed, and then we have H→� in
this case.

In order to obtain X2 in the collapsed state, we evaluate
the mean value X2�col� by averaging X2 in the range
Xmin

2 col�X2�Xmax
2 col, where Xmin

2 col and Xmax
2 col are shown in

Table II. The mean value X2�smo� in the smooth state
can also be evaluated by averaging X2 in the range
Xmin

2 smo�X2�Xmax
2 smo, where Xmin

2 smo and Xmax
2 smo are also shown

in Table II.

The mean values X2�col� and X2�smo� obtained on the
surfaces m=3 and m=4 are, respectively, plotted in Figs.
9�a� and 9�b�. The error bars denote the standard deviations
of X2 in the range shown in Table II; the errors become large
�small� when the range is wide �narrow�. The straight lines in
the figures were drawn by fitting the data to Eq. �8� with the
weight of inverse errors. Then, we have Hausdorff dimen-
sions Hcol and Hsmo in the collapsed state and the smooth
state such that

Hcol = 1.86 ± 0.19, Hsmo = 1.87 ± 0.12�m = 3� ,

Hcol = 1.97 ± 0.17, Hsmo = 2.02 ± 0.25�m = 4� . �9�

The values of H in Eq. �9� are all close to H=2, which is the
topological dimension of the two-dimensional surfaces.
Thus, we understand that not only the smooth state but also
the collapsed state can be viewed as a smooth surface. Only
difference between the smooth state and the collapsed state is
in the size, which is characterized by X2. No difference can
be seen in the Hausdorff dimensions of the smooth state and
that of the collapsed state.

Figures 10�a� and 10�b� show the bending energy S2 /NB
versus b obtained on the surfaces of m=3 and m=4, respec-
tively. The values of S2 /NB smoothly varies against b close
to the transition point even when N is increased. This indi-
cates that there is no surface fluctuation transition.

In order to confirm that no surface fluctuation transition
occurs, we plot the specific heat defined by

TABLE II. The lower bound Xmin
2 col and the upper bound Xmax

2 col

for obtaining the mean value X2 �col� in the collapsed state, and the
lower bound Xmin

2 smo and the upper bound Xmax
2 smo for obtaining the

mean value X2 �smo� in the smooth state.

m N Xmin
2 col Xmax

2 col Xmin
2 smo Xmax

2 smo

3 1892 11 21 23 34

3 3512 21 39 42 65

3 5612 40 70 72 108

3 8192 50 100 110 160

4 2202 12 24 26 39

4 3282 22 39 42 60

4 6042 35 70 75 118

4 7722 50 85 88 145

FIG. 9. Log-log plots of X2�col� and X2�smo� against N, which
were obtained on the surfaces of �a� m=3 and �b� m=4. The straight
lines drawn in the figures were obtained by fitting the data to Eq.
�8�.

FIG. 10. The bending energy S2 /NB versus b obtained on the
surfaces of �a� m=3 and �b� m=4. NB is the total number of bonds.

FIG. 11. The specific heat CS2
vs b on the surfaces of �a�

m=3 and �b� m=4. The error bars are the statistical errors, which
were obtained by the binning analysis.
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CS2
=

b2

N
��S2 − �S2�2 . �10�

in Figs. 11�a� and 11�b�, which, respectively, correspond to
S2 /NB in Figs. 10�a� and 10�b�. We find a peak in each CS2

;
and this implies that the surface fluctuation becomes large at
the peak point. However, the peak values CS2

max decrease with
increasing N. This obviously indicates that the surface fluc-
tuation phenomenon is suppressed at large N and, hence, the
surface fluctuation is not considered to be a phase transition.

IV. SUMMARY AND CONCLUSION

A tethered surface model has been investigated on trian-
gulated spherical surfaces with many holes by the canonical
Monte Carlo simulations. The ratio of the area of holes to
that of the surface including the holes is fixed in the starting
configurations, and it is given by �m−1� /2m in the limit of
N→�, where m�=3,4� represents the number of partitions of
an edge of the icosahedron. As a consequence, the total num-
ber of holes remains unchanged when the size N increases
under the condition that m is fixed.

We found a first-order transition of surface collapsing
phenomena, which are characterized by a discontinuous

change of X2. This transition separates the smooth phase
from the collapsed phase. The surfaces are smooth in both
phases and, then, the Hausdorff dimension in the smooth
state and that in the collapsed state are almost identical, and
they are H�2, which is identical to the topological dimen-
sion of surfaces. For this reason, it is possible to consider
that the transition is observed in biological or artificial mem-
branes, which are not always closed. The model surface can
be considered as an open surface, because the size La of
holes is comparable �i.e., not negligible compared� to its sur-
face size in the limit of N→�.

Moreover, the collapsing transition is not accompanied by
the surface fluctuation transition, which is the one character-
ized by a discontinuous change of the bending energy S2. A
surface fluctuation phenomenon occurs in the model and,
therefore, the specific heat CS2

has a peak at the surface
collapsing transition point. However, the peak disappears
from CS2

at sufficiently large N.
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